

VIA HAND DELIVERY

July 14, 1999

Mr. Art Riddle
NPDES Enforcement Supervisor
Water Division
Arkansas Department of Environmental Quality
8001 National Drive
Little Rock, Arkansas 72219-8913

JUL 1 6 1999

RE: Quarterly Report - Second Quarter, 1999, CAO LIS 98-119

Dear Mr. Riddle:

Pursuant to paragraph 2(1) of Consent Administrative Order No. 98-119, enclosed please find the Quarterly Report for the Second Quarter, 1999. Should you have any questions, please feel free to call Byron Smith at (870) 863-1498.

Sincerely,

John M. Carver

Vice President Safety and Environmental Compliance

JMC/ymq

Enclosures

cc: Belinda Colby, Enforcement Coordinator, Hazardous Waste Division Keith Brown, Manager, State Permits, Water Division

jcgc\riddle_99.714

QUARTERLY REPORT CONSENT ADMINISTRATIVE ORDER LIS 98-119

Prepared for:

El Dorado Chemical Company PO Box 1373 Oklahoma City, OK 73101

Prepared by:

GBM° & Associates 219 Brown Lane Bryant, AR 72022

CONTENTS

1.0	Backg	ground	. 1
	1.1	Objectives	. 1
		•	
2.0	Previo	ous Activities	.1
	2.1	Early Work	. 1
	2.2	Identification of Wastewater and Storm Water Streams	. 2
	2.3	Development of an Overall Action Plan	. 2
3.0	Curre	nt Efforts	. 3
	3.1	Development of a Preliminary Design for WM/SS	
	3.2	Current Status	. 3
	3.2.1	Detail Design	. 4
	3.2.2	Northside Outfall Consolidation	. 4
	3.2.3	Reverse Osmosis Unit	
	3.2.4	Third Street Neutralization	. 4
	3.2.5	Outfall Sampling Results	. 4
	3.3	Planned Work for Next Quarter	. 4
	3.2.2 3.2.3 3.2.4 3.2.5	Northside Outfall Consolidation Reverse Osmosis Unit Third Street Neutralization Outfall Sampling Results	

ATTACHMENTS

Attachment 1	Wastewater Minimization Project Schedule
Attachment 2	Outfalls 001 and 004 Quarterly Monitoring Sample Results

1.0 Background

1.1 Objectives

The objective of this document is to provide the Arkansas Department of Environmental Quality (ADEQ) a quarterly report on the progress of the projects associated with Consent Administrative Order (CAO) LIS 98-119, Paragraph 2, dated August 14, 1998. This document is the fourth quarterly report and is for the period from April 1, 1999 through June 30, 1999.

GBM^c & Associates (GBM^c) has prepared this quarterly report on behalf of El Dorado Chemical Company (EDCC). GBM^c is currently providing consulting engineering services associated with the upgrade and improvements for the wastewater collection and treatment systems at the El Dorado plant.

The engineering improvements were initiated by EDCC in anticipation of the new NPDES permit limits. The existing NPDES permit is currently due for renewal and this work will be used to help establish new permit limits.

Various tasks, which will provide the groundwork for the development and implementation of subsequent activities, have already been performed. With the concurrence of ADEQ, a Wastewater Minimization/Stream Segregation (WM/SS) program has been developed and is being implemented at the present time.

This progress report presents brief outlines of the above efforts performed to date and describes the status of the activities currently in progress. A Gantt chart, which presents the overall schedule of activities, is also attached.

2.0 Previous Activities

2.1 Early Work

Initial studies on EDCC's wastewater collection and treatment system were performed by URS Greiner Woodward Clyde (URSGWC) in the spring of 1997. This work indicated that the plant collection system needed improvements with regard to re-routing uncontaminated storm water away from the treatment system and segregating process and contact storm water and routing these flows to treatment. In the existing system, process wastewater, cooling tower blowdown, demineralizer backwash, contact storm water (i.e., rainwater falling within the process areas), and a significant portion of the non-contact storm water (rainwater falling outside of the process areas) are all combined and routed to the treatment system. By segregating these streams according to their characteristics, a more effective and efficient treatment system can be designed.

Cost estimates developed on the basis of this early evaluation work indicated that a new treatment system sized to handle the volumes of wastewater involved would be prohibitively expensive. It was concluded that a necessary initial step would be the development and implementation of a plant-wide stream segregation program to route each wastewater stream to its proper destination, according to its characteristics and composition, coupled with a wastewater minimization program to reduce the volume and contaminant loading of the process wastewaters generated.

Full implementation of the WM/SS program has been temporarily delayed pending procurement of outside funding. However, the wastewater characterization will be completed in time to provide data for the permit application and Basis of Design (BOD) document for the new facility.

The main purpose of such a Wastewater Minimization/Stream Segregation (WM/SS) Program would be to reduce flows and loadings of the wastewater which would need to be processed through the future treatment facility. With these reductions, the design flow for the new facility should be significantly less than existing flows and therefore should result in a smaller and more efficient wastewater treatment system.

The WM/SS program was intended to be completed with sufficient time remaining to perform a wastewater flow and loading characterization study by August 1, 1999. The new flows and loadings were to be incorporated into the NDPES permit renewal application, which is also due to the ADEQ by August 1, 1999. However, since the WM/SS project will not be completed by August 1, 1999, estimates of flow and loading will be used for the permit application and Basis of Design (BOD) document for the new treatment facility. Additional data will be submitted as it is collected.

2.2 Identification of Wastewater and Storm Water Streams

Following the initial studies by URSGWC, implementation of the preliminary phases of the WM/SS program commenced in late spring of 1997. EDCC appointed Mr. Kyle Wimsett, a member of the plant's operations staff, to work full time in coordination with the plant's Environmental Department, on the first phase of the WM/SS program. This phase consisted of a plant-wide, areaby-area characterization of the existing wastewater collection system, including the identification of each of the wastewater streams in the plant and the identification of each stream's point of origin and the specific route to the treatment system.

Dye studies were conducted in each operating area of the plant to develop the information on routing and to delineate the existing system. This phase of the WM/SS program continued through the spring and early summer of 1998. The information developed through these early efforts provided the foundation for defining the next phases of the WM/SS program.

2.3 Development of an Overall Action Plan

The early work performed by plant personnel allowed the formulation and development of a conceptual plan for the remainder of the WM/SS project. This plan is presented in graphical form (Gantt chart in Attachment 1) and shows an overall project schedule and the duration of each specific task.

The duration shown on the second column of the Gantt chart is given in working days (as opposed to calendar days), with the completion of the construction phase originally scheduled for July 1999. However, due to budget constraints, the construction phase of the WM/SS project has been delayed until additional funding can be secured. Estimates of wastewater flows and loadings will be incorporated into the NPDES permit renewal application to be submitted by August 1, 1999. The estimated flows and loadings will also become a part of the Basis of Design (BOD) document for the new treatment facility. Additional data will be submitted as it is collected.

Implementation of the WM/SS program action plan was initiated in June of 1998 and it continues at present, as the attached Gantt chart indicates.

2

3.0 Current Efforts

3.1 Development of a Preliminary Design for WM/SS

The preparation of a preliminary design required several tasks, as follows:

- 1. Topographic Survey. As a necessary initial step for the definition of the overall approach to develop a WM/SS design package, the services of a surveying contractor were obtained to perform a plant-wide topographic survey with sufficient detail to provide the information that will be necessary later in the detail and layout of the containment and curbed areas, rerouting of existing drain lines or the installation of new ones, and the location and design of collection basins and sumps, pump stations and other such installations. The survey work was initiated in early July and was completed in mid-August, 1998.
- 2. Existing Drawing File Search. At the same time that the topographic survey was in progress, an effort was made to locate all of the existing drawings, documents and records which might be useful during the detail design phase of the project.
- Basis of Design (BOD). A conceptual Basis of Design (BOD) for the WM/SS project has been developed to establish the scope of the project, outline the overall project approach and list the specific modifications and improvements to be developed and implemented as part of this effort.
- Preliminary Design. On the basis of the BOD document, a preliminary design was developed. The preliminary design was the basis for the WM/SS projects, listed below as Phase I through Phase V.

3.2 Current Status

This section details work accomplished since the April 14, 1999 report. The preliminary design is complete and some phases of the detail design are in progress. The detail design was divided into five phases according to location in the plant. The purpose of developing five design packages was to expedite construction activities for the WM/SS project (i.e., for design activities for one phase to be on-going during construction for another phase). The five detail design phases are as follows:

- Phase I: Northside Outfall Consolidation
- Phase II: Sulfuric Acid and High Density Ammonium Nitrate (AN) Prill Bulk Storage Building Area
- Phase III: Nitric Acid Area
- Phase IV: AN Prilling Areas
- Phase V: Liquid AN Tank Storage and Ammonia Storage Area

The WM/SS project schedule is included as Attachment 1.

3.2.1 Detail Design

Design work is continuing on the WM/SS improvements. The final engineering design for modifications in the Sulfuric Acid and High Density Ammonium Nitrate (AN) Prill Bulk Storage Building Area (Phase II) has been completed and was submitted to EDCC during the second quarter of 1999. Engineering design of the remaining WM/SS improvement phases has been temporarily delayed due to budget constraints.

3.2.2 Northside Outfall Consolidation

Construction was initiated during the first quarter of 1999 and completed June 1999. Due to soil conditions encountered during construction, storm water runoff from the north side of the plant was not consolidated into a single outfall, but segregated into two outfalls. Consolidation of the storm water into two outfalls instead of one should not have any material impact on the future management of non-contact runoff from the facility.

3.2.3 Reverse Osmosis Unit

A reverse osmosis water treatment system at the Boiler House has been installed and operational since early January 1999. The unit has significantly reduced the sulfate loading to the facility's wastewater treatment system.

3.2.4 Third Street Neutralization

The Third Street Sewer pH Neutralization system was completed in mid-June 1999, and is in operation.

3.2.5 Outfall Sampling Results

Quarterly monitoring sampling results for Outfalls 001 and 004 are included in Attachment 2. All sampling required under Attachment A is complete. Analytical results will be submitted with the final report due August 1, 1999.

3.3 Planned Work for Next Quarter

The following tasks are planned for the next quarter (July 1 through September 30, 1999):

- Receive contractor bids for the sulfuric acid area and high-density ammonium nitrate prill bulk storage building WM/SS improvements. (Pending the procurement of outside funding.)
- Complete design work for the nitric acid, AN prilling area, and liquid AN tank storage/ammonia storage area WM/SS improvements. (Pending the procurement of outside funding.)
- 3. Continue sampling per Attachment A of the CAO.

Attachment 1 Wastewater Minimization Project Schedule
Attachment 2 Outfalls 001 and 004 Quarterly Monitoring Sample Results

July 14, 1999

5

Attachment 1

Wastewater Minimization Project Schedule

Attachment 2

Outfalls 001 and 004 Quarterly Monitoring Sample Results

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

06/24/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED: COLLECTED BY: 06/07/99 CLIENT PRESERVED7: Y

TIME RECEIVED: 10:55
BROUGHT IN BY: C

BROUGHT

	•	SAMPLE			-BI	EGIN			COLLECTION
SAMPLE ID SOURCE	PARAMETER	CONC.	UNITS	MIDL	DATE	TIMI	EANL	METHOD	DATE TIME
EL67705 001	Antimony	<50.0	ug/i	50.0	06/10/99	10:00	5L	EPA 200.7	06/07/99 08:25
	Nickel(Freshwater)	13.0	ug/l	10.0	06/10/99	10:00	SL	EPA 200.7	
	Copper	8.0	ug/I	2.0	06/10/99	10:00	SL	EPA 200.7	
	Chromium	3.0	ug/i	3.0	06/10/99	10:00	SL	EPA-200.7	
	Beryllium	<1.0	ug/l	1.0	06/10/99	10:00	\$L	EPA 200.7	
	Zinc	84,0	ug/l	4.0	06/10/99	10:00	SL	EPA 200.7	
	Hex Chromium Extraction	Completed	mg/l	0.003	06/07/99	15:00	SL	EPA 218.4	
	Hexavalent Chromium	<0.003	rng/l	0.003	06/07/99	16:00	SL	EPA 218.4	
	Arsenic	<10.0	ug/l	10.0	06/10/99	10:30	SL	EPA 208.2	
	Cadmium	<1.0	ug/l	1.0	06/15/99	10:30	SL	EPA 213.2	
	Lead	<3.0	ug/l	3,0	06/09/99	13:30	SL	EPA 239.2	
	Selenium	<3.0	ugul	3.0	06/10/99	09:45	SL	EPA 270.2	
	Silver	<2,0	ug/l	2.0	06/09/99	16:45	SL	EPA 272.2	
	Thatlium	<2.0	ug/l	2,0	06/09/99	15:45	SL	EPA 279.2	
	Chromium(VI)	<3.0	ug/l	3.0	06/07/99	16:00	SL	EPA 218.4	
	Mercury	<0.2	ug/l	0.2	06/08/99	10:00	SL	EPA 245.1	
	Total Suspended Solids	10.0	mb/l	1.0	06/08/99	10:40	LA	EPA 160.2	
	BOD5	5.0	mg/l	1.0	06/09/99	08;15		EPA 405.1	
	BOD Standard	175.0	mg/I	1.0	06/09/99	08:15	LA	EPA 405.1	
	TOC	10.2	mg/l	1.0	06/08/99	08:25	GL	EPA 415.1	
	COD	44,4	mg/l	3.7	06/09/99	09:30	GL	EPA 410.4	
	Total Dissolved Solids	1500.0	mg/l	1.0	06/11/99	10:35	GL	EPA 160.1	
	Suifate	485	rng/l	2	06/18/99	11:40	GC	EPA 375.4	
	Cyanide	<5.0	ug/l	5.0	08/14/99	14:00	GC	EPA 335.2	
	Suffide	0.03	mg/l	0.01	06/21/99	18:00	GC	EPA 376.2	
	Nitrate-N	165.3	mg/l	0.1	06/08/99	07:25	GC	EPA 352.1	
	Ammonia-N Titration	6 0,5	mg/l	0.3	06/08/99	07:30	EJ	EPA 350.2	
	Chloride	67.6	mg/l	1.0	06/08/99	07:50	GC	EPA 325.3	
	Phenol, Total	<5.0	ug/l	5.0	06/23/99	13:00	EJ	EPA 420.1	
	Sulfite	<2.0	mg/l	2.0	06/08/99	14:45	GÇ	EPA 377.1	
	Nitrite-N	2.2	mg/l	0.005	06/08/99	13:00	GC	EPA 354.1	
Volatile Compounds			•						
	Acrolein	<mdl< td=""><td>ug/L</td><td>50</td><td>06/10/99</td><td>12:07</td><td>СН</td><td>EPA 624</td><td></td></mdl<>	ug/L	50	06/10/99	12:07	СН	EPA 624	
,	Acrylonitrile	<mdl< td=""><td>ug/L</td><td>50</td><td>22.72.00</td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50	22.72.00				
	Benzene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					

Page

1

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

06/24/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED: COLLECTED BY: 06/07/99 CLIENT PRESERVED?: Y

TIME RECEIVED: 10:55

BROUGHT IN BY: C

		SAMPLE				EGIN-			COLLECTION
SAMPLE ID SOURCE	PARAMETER	CONC.	UNITS	MDL.	DATE	TIME ANL		METHOD	DATE TIME
Volatile Compounds				1					
EL67705 001	Bromodichtoromethane	<mdl< td=""><td>ug/L</td><td>10</td><td>06/10/99</td><td>12:07</td><td>ĊН</td><td>EPA 624</td><td>06/07/99 08:25</td></mdl<>	ug/L	10	06/10/99	12:07	ĊН	EPA 624	06/07/99 08:25
	Bromoform	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Bromomethane	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Carbon Tetrachloride	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Chlorobenzene	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Chloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	2-Chloroethylvinylether	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Chloroform	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Chloromethane	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Dibromochloromethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,1-Dichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,2-Dichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,1-Dichloroethene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	trans-1,2-Dichlomethene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,2-Dichloropropane	<mdl< td=""><td>บg/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	บg/L	10					
•	cis-1,3-Dichloropropene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	trans-1,3-Dichloropropene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Ethylbenzene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Methylene chloride	<mdl< td=""><td>ug/L</td><td>20</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	20					
	1,1,2,2-Tetrachloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Tetrachloroethene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Toluene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Trichloroethene	<mdl< td=""><td>υg/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	υ g/L	10					
	1,1,2-Trichloroethane	<mol< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/L	10					
	1,1,1-trichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Vinyl chloride	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Bis (Chloro-methyl) Ether	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Dichlorodifluoromethene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Trichlorofluoromethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
/olatile Surrogates									
	Dibromofluoromethane	97	% Rec	76-144	06/10/99	12:07	СН		
	Toluene d8	102	% Rec	88-110					
	4-Bromofluorobenzene	98	% Rec	86-115					

Page

2

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

06/24/99

El Dorado Chernical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED: COLLECTED BY: 06/07/99 CLIENT PRESERVED?: Y
TIME RECEIVED: 10:55

BROUGHT IN BY : C

		SAMPLE			-BI	EGIN-			COLLECTION
SAMPLE ID SOURCE	PARAMETER	CONC.	UNITS	MDL	DATE	TIM	E ANL	METHOD	DATE TIM
Pesticides/PCB Compounds									
EL67705 001	Aldrin	<mdl< td=""><td>ug/L</td><td>0.05</td><td>06/10/99</td><td>13:00</td><td>CH</td><td>EPA 608</td><td>06/07/99 08:25</td></mdl<>	ug/L	0.05	06/10/99	13:00	CH	EPA 608	06/07/99 08:25
	alpha-BHC	<mdl< td=""><td>ug/L</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.05					
	beta-BHC	<mdl< td=""><td>υg/<u>L</u></td><td>0,05</td><td></td><td></td><td></td><td></td><td></td></mdl<>	υg/ <u>L</u>	0,05					
	delta-BHC	<mdl< td=""><td>ug/L</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.05					
	gamma-BHC (Lindane)	<mdl< td=""><td>ug/L</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.05					
	Chlordane	<mdl< td=""><td>υg/L</td><td>0.20</td><td></td><td></td><td></td><td></td><td></td></mdl<>	υg/L	0.20					
	4,4'-DDD	<mdl .<="" td=""><td>υg/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl>	υg/L	0.10					
	4,4'-DDE	<mdl< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.10					
	4,4'-DDT	<mdl< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.10					
	Diektrin	<mdl< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.10					
	Endosulfan i	<mdl< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.10					
•	Endosulfan II	<mdl< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.10					
	Endosulfan Sulfate	<wdf< td=""><td>ug/L</td><td>0,10</td><td></td><td></td><td></td><td></td><td></td></wdf<>	ug/L	0,10					
	Endrin	<mol< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/L	0.10					
	Endrin aldehyde	<mdl< td=""><td>ug/L</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.10					
	Heptachlor	<mdl< td=""><td>ug/L</td><td>0.08</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.08					
	Heptachior epoxide	<mdl< td=""><td>ug/L</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	0.05					
	Methoxychlor	<mdl< td=""><td>ug/L</td><td>Q.05-</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	Q.05-					
	Toxaphene	<mdl< td=""><td>ug/L</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	5.0					
	Aroclor 1015	<mdl< td=""><td>ug/L</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1.0					
	Aroclor 1221	<mdl< td=""><td>ug/L</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1.0					
	Aroclor 1232	<mdl< td=""><td>ug/L</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1.0					
	Aroclor 1242	<mdl< td=""><td>ug/L</td><td>1,0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1,0					
	Aroclor 1248	<mdl< td=""><td>ug/L</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1.0					
	Aroclor 1254	<mdl< td=""><td>ug/L</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1.0					
	Aroclor 1260	<mdl< td=""><td>ug/L</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	1.0					
Pesticide/PCB Surrogates	•								
•	TCMX	85	% Rec	40-150	06/09/99	13:00	СН		
Herbicide Compounds									
	2,4-Dichlorophenoxy acetic aci	<mdl< td=""><td>ug/L</td><td>10</td><td>06/10/99</td><td>16:00</td><td>СН</td><td>EPA 615</td><td></td></mdl<>	ug/L	10	06/10/99	16:00	СН	EPA 615	
	2,4,5-TP (Silvex)	-⟨MDL	ug/L	4			•		
Semi Valatile Priority Pollutant	milia ii fadama	***************************************	- 	•					
क्याराम - न्यांकाश्चरका र राज्याराष्ट्र र क्राव्यक्ति।	Acenaphthene	<mdl< td=""><td>ug/l</td><td>10</td><td>06/10/99</td><td>11:58</td><td>CH</td><td>EPA 625</td><td></td></mdl<>	ug/l	10	06/10/99	11:58	CH	EPA 625	
	Acenephthylene	<mdl< td=""><td>ug/l</td><td>10</td><td>yyr i ui au</td><td>, 1.00</td><td></td><td></td><td></td></mdl<>	ug/l	10	yyr i ui au	, 1.00			
	croateabunity more		43r,	, 0					
	• • •								
		Page	3						

318-255-0060 318-251-5614 FAX 800-256-4362

414 West California Ave Ruston, LA 71270

Quality People Working For A Quality Environment

06/24/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C
DATE RECEIVED: 06/07/99
COLLECTED BY: CLIENT

PRESERVED?: Y
TIME RECEIVED: 10:55
BROUGHT IN BY: C

			SAMPLE				GIN-	ANI		COLLECTIO
AMPLE ID		PARAMETER	CONC,	UNITS	MDL	DATE	TIME	ANL	WETHOD	DATE TIM
emi Volatik	Priority Pollutant									
L67705	001	Anthracene	<mdl< td=""><td>ug/l</td><td>10</td><td>06/10/99</td><td>11:58</td><td>CH</td><td>EPA 625</td><td>06/07/99 08:2</td></mdl<>	ug/l	10	06/10/99	11:58	CH	EPA 625	06/07/99 08:2
		Benzidne	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50					
		Benzo-(a) Anthracena	<mol< td=""><td>ug/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/i	10					
		Benzo (a) Pyréné	<mdl< td=""><td>ug/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	10					
		Benzo (b) Fluoranthene	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10					
		Benzo (ghi) Perylene	<mdl< td=""><td>ug/I</td><td>20</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	20					
		Benzo (k) Fluoranthene	<mdl< td=""><td>ug/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	10					
		Bis (2-Chloroethoxy) Methane	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Chloroethyl) Ether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Chloroisopropyl) Ether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Ethihexyl) Phthalete	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		4-Bromophenyl-phenylether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Butylbenzylphthalate	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		4-Chloro-3-Methylphenol	<mdl< td=""><td>ug∕l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug∕l	10					
		4-Chlorophenyl-2-Methylphenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2-Chioronaphthalene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2-Chlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		3-Chlorophenol	<mol< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	10					
		4-Chlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Chrysene	<mdl< td=""><td>ug/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	10					
		Dibenz (a,h) Anthracene	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20					
		1,2-Dichlorobenzene	<mdl< td=""><td>ug/î</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/î	10					
		1,3-Dichlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		1,4-Dichlorobenzene	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10					
		2,3-Dichlorophenol	<mdl< td=""><td>ug/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	10					
		2,4-Dichlorophenol	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10					
		2,5-Dichlorophenol	<mdl< td=""><td>ug#</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug#	10					
		2,6-Dichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		3,3-Dichlorobenzidine	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50					
		3,4-Dichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		3,5-Dichlorophenol	<midl< td=""><td>นg/โ</td><td>10</td><td></td><td></td><td></td><td></td><td></td></midl<>	นg/โ	10					
		Diethylphthalate	<mol< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	10					
		2,4-Dimethylphenol	<mol< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	10					
		Dimethyl Phthalate	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

06/24/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED:

COLLECTED BY:

06/07/99 CLIENT PRESERVED?: Y

TIME RECEIVED: 10:55

BROUGHT IN BY : C

SAMPLE ID SOURCE			SAMPLE		-BEGIN					COLLECTION		
		PARAMETER	CONC.	UNITS	MDL	DATE	TIM	EANL	METHOD	DATE		
Semi Volati	le Priority Pollutant											
EL67705	001	Di-n-Butylphthalate	<mdl< td=""><td>ug/l</td><td>10</td><td>06/10/99</td><td>11:58</td><td>CH</td><td>EPA 625</td><td>06/07/99 0</td><td>8:25</td></mdl<>	ug/l	10	06/10/99	11:58	CH	EPA 625	06/07/99 0	8:25	
		4,6-Dinitro-2-Mathylphenol	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50							
		2,4-Dinitrophenol	<mdl< td=""><td>ug/i</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	5 0							
		2,4-Dinitrotoluene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		2,6-Dinitrotoluene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		Di-n-Octyl Phthalate	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10							
		1,2-Diphenylhydrazine	<mdl< td=""><td>цg/I</td><td>20</td><td></td><td></td><td></td><td>,</td><td></td><td></td></mdl<>	цg/I	20				,			
		Fluoranthene	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10							
		Fluorene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		Hexachlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
	•	Hexachlorobutadiene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		Hexachlorocyclopentadiene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		Hexachloroethane	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20							
		Indeno (1,2,3-cd) Pyrane	<mdl< td=""><td>ug/t</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/t	20							
		Isophorone	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10							
		Naphthalene	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10							
		Nitrobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		2-Nitrophenol	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20							
		4-Nitrophenol	<mol< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	50							
		N-nitrosodimethylamine	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50							
		N-Nitrosodi-n-Propylamine	<mol< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	20							
		N-Nitrosodiphenylamine	<mdl< td=""><td>ug/i</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	20							
		Pentachlorophenol	<md)_< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></md)_<>	ug/l	50							
		Phenanthrene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		Phenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		Pyrene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		1,2.4-Trichlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		2,4,8-Trichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		4-Chiorophanyi Phenylether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10							
		2,3,7,8-Tetra-Chlorodibenzo-P-	<mdl< td=""><td>ug/i</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	5							
Semi-volatil	e Surrogates	my mer per a men an entreme and an entreme and a		- • ·	•							
	 	Nitrobenzene	39	% Rec	35-115	06/10/99	11:58	СН				
		2-Fluorobiphemyl	53	% Rec	43-116							
		Terphenyl d14	53	% Rec	33-141							

Page

J

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

06/24/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED:

COLLECTED BY:

06/07/99 CLIENT PRESERVED?: Y

TIME RECEIVED: 10:55

BROUGHT IN BY: C

			SAMPLE	BEGIN					COLLECTION
SAMPLE	D SOURCE	PARAMETER	CONC.	UNITS	MDL	DATE	TIME ANL	METHOD	DATE TIME
Semi-yolat	le Surrogates					V			,
EL67705	001	Phenol d8	42	% Rec	10-110	06/10/99	11:58 CH		06/07/99 08:25
		2-Fluorophenol	39	% Rec	20-110				
		2,4,6-Tribromophenol	10	% Rec	10-123				

Certified By QA Director/QC Manager

Analyses conducted in accordance with the list of Approved Test Procedures, published in 40 CFR—Parts 60, 136, and 261. Test procedures are from the 18/19th edition of Standard Methods for the Examination of Water and Wastewater, Methods for Chemical Analysis of Water and Wastes, 1979 (EPA) ASTM (Annual Book of Standards, Part 31, Water, 1985), or Test Methods for Evaluating Solid Waste (SW-846).

The duplicate analyses and/or spiked samples indicate all methodologies are in control. Retain records for three years.

^{*} Indicates out of compliance limits established by client and/or regulatory agencies. See permit for regulatory reporting requirements.

07/06/1999 10:58

501-863-1499

ELDORADO CHEMICAL

PAGE

PAGE 1

P.O. #___

414 West California (318) 255-0060 Ruston, LA 71270 (800) 256-4362

	a care a care a care					CUSTODY			Rush ()	Stan	dard ✓
	3 - 3 - 3 Pri		Client			(Marking assessment		Deli	vered By:		
Name E	DOMOO	CHEM	ical	Atto: West Mo	CAN	Client []	Es	urthNet 🗸	Delivery Se	rvice 🛚	Bus 🛚
Address: 40	300	11-11-	ALE								
City, State, Zij	p: Et (Do! Aou	AR -	(73)				Project N	ame/Location	(iii)	
Phone Number	1:830 - 6	163-148	Fax Nu	mber:							
LabUse		Sa	mpie Collection				AU Seco	les la pe Coo	let (0 4%)		
SampleNo	Date	Tine	Comp/Grab	Source	Analysis	Résplited	es inc	Dreseres	tve: Mate	s Special	Instructions
	67-99	U8_75	Coccb	∞ ì	PEST P	CP	G		- W		
	U,	W	24	¥	Diestin		W		- W		
	si,	ų	N.	ч	BNA		\u00e4		- 4		
ar An											
All samples w	ill be colle	cted and pr	tserved accordin	ig to USEPA establis	hed protocots,						
Additional R	emarks:		***************************************								
	`										

Sampled by:	1/,	My						<u> </u>		A	
Relinquished	by: //	h		Date: 6/7/99	Time: / 0.55	Received by:				Date:	Time:
Relinquished	by:	Y		Date:	Time:	Received by:		M-ARRIVE TOUR		Date:	Time:
Relinquished	by;			Date:	Time:	Received by:			$\Delta \Box$	Date:	Time:
Relinquished	by:			Date:	Time:	Received for Lat	poratory b	of Jany	Was !	Dates 7-99	Time:/0.95

The Results of Two 7-day Chronic Definitive Toxicity Tests for El Dorado Chemical Company

(NPDES Permit #AR0000752)

June 16, 1999

Prepared by:

John M. Wakeman, Ph.D. Biomonitoring Supervisor EarthNet Laboratories 414 West California Ruston, Louisiana 71270

TABLE OF CONTENTS

	Page
1.0 Introduction. 2.0 Methods and Materials. 2.1 Test Methods. 2.2 Test Organisms. 2.3 Dilution Water. 2.4 Test Concentrations. 2.5 Sample Collection. 2.6 Sample Preparation. 2.7 Monitoring of Chronic Tests. 2.8 Data Analysis. 3.0 Results and Discussion. 4.0 Conclusions. 5.0 References.	. 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2
Table 1 - Summary of <u>Ceriodaphnia</u> <u>dubia</u> 7-day Chronic Survival and Reproduction Data	, 3
Table 2 - Summary of Fathead Minnow 7-day Chronic Survival and Growth Data	. 3
Table 3 - NaCl 48-Hour Reference Toxicant Test Results	. 4
Appendices A - Raw Data B - Chain of Custody C - Data Analysis D - Summary of Monthly Reference Toxicity Test E - Agency Data Forms	Data

1.0 <u>Introduction</u>

EarthNet Laboratories (ENL), Ruston, Louisiana, conducted two 7-day chronic definitive tests for El Dorado Chemical Company (EDCC), El Dorado, Arkansas, to fulfill the quarterly NPDES permit requirements. The test organisms used were the cladoceran, Ceriodaphnia dubia, and the fathead minnow, Pimephales promelas.

2.0 <u>Methods and Materials</u>

2.1 Test Methods

All test procedures and methods followed were according to "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms" (EPA600/89).

2.2 Test Organisms

The cladocerans (<u>Ceriodaphnia</u> <u>dubia</u>) were obtained from <u>ENL</u> cultures and were less than 24 hours old at test initiation. The neonates were collected from the same 8-hour time period.

The fathead minnows (<u>Pimephales</u> <u>promelas</u>) were obtained from Aquatox Inc, and were less than 24 hours old at test initiation.

2.3 Dilution Water

Due to receiving water toxicity documented in previous testing, the dilution water used for the <u>Ceriodaphnia dubia</u> and fathead minnow 7-day chronic test was moderately hard reconstituted water (EPA600/89).

2.4 Test Concentrations

The test concentrations used were 100, 50, 25, 12.5 and 6.25 percent effluent from outfall 001, and a laboratory control.

The fathead minnow 7-day chronic test contained 4 replicates of 10 organisms for a total of 40 organisms per concentration. The <u>Ceriodaphnia dubia</u> 7-day chronic test contained 10 replicates of one organism for a total of 10 organisms per concentration. Forty-eight hour reference toxicant tests using sodium chloride (NaCl) were conducted concurrently with the 7-day chronic tests in order to document organism sensitivity.

2.5 Sample Collection

Three consecutive 24-hour composite samples were collected by EDCC's personnel on June 7, 9, 11, 1999. Upon completion of each composite, the samples were iced to $4^{\circ}C$ and immediately shipped to ENL's laboratory in Ruston, Louisiana (See Appendix B - Chain-of-Custody).

2.6 Sample Preparation

Upon receipt, the samples were logged, labeled with identification numbers and warmed to $25\pm1^{\circ}C$. Total Residual Chlorine (TRC) levels were measured and recorded, if present. (See Appendix A - Raw Data Sheets). Initial dissolved oxygen, pH, conductivity and temperature measurements were also recorded.

2.7 Monitoring of Chronic Tests

Monitoring of the 7-day chronic tests consisted of daily solution renewal, pre and post renewal dissolved oxygen measurements, pH, and conductivity measurements. Organism survival/mortality was also recorded on a daily basis.

A temperature of 25±1°C was kept constant using a Remcor liquid circulator and water bath combination for the fathead minnow 7-day chronic test, and a Model 818 Precision dual programmable incubator for the <u>Ceriodaphnia dubia</u> test. Test temperatures were monitored diurnally for the 7-day period.

2.8 Data Analysis

<u>Ceriodaphnia</u> <u>dubia</u> survival and reproduction data and fathead minnow survival and growth data were analyzed using the appropriate statistical tests (Fisher's Test, Dunnett's Test or Steel's Many-One Test) from the Toxstat statistical software package. Reference toxicant LC50 values were generated using an USEPA Epistat software package.

3.0 Results and Discussion

<u>Ceriodaphnia</u> <u>dubia</u> survival and reproduction data are summarized in Table 1. The <u>Ceriodaphnia</u> <u>dubia</u> experienced no significant (P=0.05) mortality in the 100% effluent concentration (critical dilution) or at any other dilution tested.

No significant sublethal effects on cladoceran reproduction were observed at any tested effluent concentration, including the 100% concentration. <u>Ceriodaphnia dubia</u> reproduction averaged 19.0 neonates per female in the control and 18.9 in the 100% effluent.

Table 1. Summary of <u>Ceriodaphnia</u> <u>dubia</u> 7-day Chronic Survival and Reproduction Data.

<u>Concentration</u>	Percent Survival	Average Reproduction per female
Control	100	19.0
6 percent	100	19.8
12 percent	90	20.6
25 percent	100	19.6
50 percent	100	20.3
100 percent	90	18.9

Fathead minnow survival and growth data are summarized in Table 2. The fathead minnows experienced no significant (P = 0.05) lethal toxicity at any tested effluent concentration. The minnows showed 97.5% survival in the controls and 90% survival in the 100% concentration.

No sublethal effects on fathead minnow growth were observed. Minnow growth over the 7-day period averaged 0.403 mg in the control and 0.400 mg in the 100% effluent concentration.

Table 2. Summary of Fathead Minnow 7-day Chronic Survival and
Growth Data

Concentration	Percent Survival	Average Growth (mg)
Control	97.5	0.403
6 percent	100	0.432
12 percent	<i>9</i> 7.5	0.405
25 percent	100	0.443
50 percent	100	0.398
100 percent	90	0.400

 The NaCl reference toxicant test results are summarized in Table 3. The reference toxicant tests indicated that the test organisms were within their normal sensitivity ranges.

: '*********************

Table 3. NaCl Reference Toxicant Test Results.

95%
48-Hour LC50 *(ppt) Confidence Intervals

<u>Pimephales promelas</u> 8.42 6.0 - 10.0 <u>Ceriodaphnia dubia</u> 2.45 2.0 - 3.0

Parts Per Thousand (Salinity)

4.0 <u>Conclusions</u>

The three composite samples collected at EDCC's NPDES discharge site were found to show no significant lethal or sub-lethal toxicity to either test species.

5.0 <u>References</u>

U.S. EPA. 1994. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. 2nd Edition, Cincinnati, Ohio. EPA/600/4-91/002, July 1994.

APPENDIX A RAW DATA SHEETS

CERIODAPHNIA 7-DAY WATER QUALITY DATA

EML #	<u>्र</u> erlpt	<u> D61</u> Ion	SY DO	784	ecen	1 001	····	_ Inl _ Ter	tisti minet	ed: ()ate (/8/ /6/	199 169	Time Time	9	<u>30</u> 11	lubA⊷\ Neon	te is	olated Collec	lı :tėdz	Dete Dete	6/8	7/9°	et ime Time	//· = Z:3:	243€ 3010	ius 1
Same 10 # Technician Time:	1		D D	ey O	JU 8:3	<u>~</u> 'ò Ar	1,1	τω 9:30	,	2 <u></u>	7W :00		3 _ <i>7</i> 3 _ <i>1</i> 2	~W =30	4 <u>o</u> ^ 4	74 9:3	ر ه	. 5 .	70 12:	<i>ن</i> ٥٥	. 6,	<u>J'</u>	<u>w</u>	7 <u>-</u> 7 <u>-</u>	JW 12:01	0	
			Dis	solve	i Oxyg	en (m	g/t)						pł								Conc	ductiv		µrtios/	'cm)		
Percent Effluent	0	1	2	3	4	5	6	7	8	0	1	2	3	Day 4	5	6	7	8	0	1	2	3	Day 4	5	6	7	8
CAMOL							83/ 14	0.4		12.3	7.1	74	774	1.7/3	7.3/4	1.3/	2.3/		269	271	272	274	276	275	279		
6.25	8.5	8.5	85/5	0.4	1/8	26	7.4	8.4		12	7.1/	776	7.7	7.4	73/25	94/ 195	7.5			l			}		478	l	
12.5	8.4	8.4	12.4	64	1	17	14	8.4		120	I, 3/	2.3/	7.2/	-3/	73/	7.6	15/		495	482	551	505	616	592	603		
25	83	84	5.74	16	547	85/	84/	8.4		108	73/	1.4	73/	73/	247	7.6/	7.61	/		}		1	l]	670	1	
5°	43	844	0/3	66	5.3/	8.5%	85/4	3.5		1.9	7.4/	7.60	75/	74/	7/2	7.6/	7.6/	1 /	ŀ	i	1	1	1		884	1	
100	8.3	8.4	83	34	885	1/6	85/	8:4		1	76/	7.6	7.8/	75/	7.7/8	79	7.7	1 /			1	1	ł	l .	1939		
			./													\mathbb{Z}											
		./			/	/									/												
		Total Hardness (mg/L CaCO ₂)							Alkalinity (mg/L CaCO ₁)									Сопт	nents:	·							
Percent Effluent							Day] —											
	0	1	2	3	4	5	6	7	8	0	1	2	3	4	5	6	7	8	 —				,				
100%	130	130	136	136	126	126	126			17	17	19	19	16	16	16											
	<u> </u>		<u> </u>							_				<u> </u>				<u> </u>	<u> </u>								

EARTHNET LABORATORIES, INC. CERIODAPHNIA 7 - DAY SURVIVAL AND REPRODUCTION DATA

ENL#	3770	5-6785	-2 6	7998		Test Beg	inning _	6/8/	99	
Client: _e	ei D	6PARO	CHO	ч		Test End	ing	15/4	g_ Time_12	200
Source		OUTF	the oc) <i> </i>		ID#	63	705	679	98
Dilution Wat	er :	MH				ID#	MH	712		
Technician: Time: Tempture:	Day	04:30	19.30	2/030	3 12 3	04/030	5 1200	6/130	7 <u>7</u> w 8 7 <u>1200</u> 8 7 <u>2</u> 8	

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Adults 10 10 10 10 10 10 10 10	Neonates 0 0 4.7 3.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000 1000 1000	0 2 3 3 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(000	47 38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.9 (G -	47 38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 O .	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 ठ	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	100
		. / 5
	10	0
	10	
(.25 9 3 0 0 0 0 0 0 0 0 0 0	_ ()	
	75	51
5 5 4 4 4 3 4 3 7 3	10	<i>Z</i> 9
5 5 4 4 4 3 4 3 5 3,	_/0	φ'
7 9 12 11 13 9 12 9 9 12 8	_/0	104
8 ,	-	- !
1 0 0 0 0 0 0 0 0	10	
	14	
12.59 3 0 0 0 0 0 0 0 0		
		54
	4	3.
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	91	3
	q	104
8		
	10	
	<u> </u>	
	<u> </u>	
25 6 4 7 3 5 4 4 5 3 5 3	_/0	44
	(0	31
		9-
1 12 14 11 12 9 13 12 11 11	10	116
		ļ .
	(0)	
		<u> </u>
50 9 4 3 4 6 5 5 7 6 5 4 8	(0)	52
50 5 4 3 4 6 5 5 7 6 8 9 9 9	/9	
9 4 3 / 4 9 1 1 4 2	10	44
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0)	
7 12 13 11 10 11 9 13 10 9	10	128
1 0 0 0 0 0 0 0 0	(0	
	(0	
	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d	42
	3	27
5 3 4 7 7 4 3 4 3 7		4
7 9 10 11 9 9 11 10 11 12	G G	10/2
8 7 10 11 7 11 12		

NUMBER OF NEONATES PER BROOD CERIODAPHNIA

Client: <u>H7 DORADO CHEM.</u> Date: 6/15/99

ENL#: 67705 .67852 67998

Replicate (Organism)	Effluent Concentration (%)														
-	Courte	6.25	12.5	25	50	1007									
A	18	18	21	22	20	19									
В	21	20	22	22	21	19									
С	19	21	19	19	20	.20									
D	15	22	23	18	22	/3	en e								
E	17	18	21	21	20	DOAD	-								
F	21	20	DCA D	18	22	17									
G	22	20	21	21	23	18									
Н	19	19	17	19	22	19									
I	19	22	20	18	15	20									
J	19	18	21	18	18	20									
MEAN															

LARVAL HINNOW DATA SHEET

EHL # 67705 67852 67998	_ Initiation: Date 6/8/99 Time 1300
Client LL DONADO CHOM CO	Terminated: Date 6/15/99 Time 1230
Sample Description OUTFALC OOL	Technician(s): TW
Sample ID #	
Shipper	
Sample Type: Grab Composite Other	Test Salinity Artificial Salts Used
Dilution Water: ID# 7, 2 Description AH	Aeration
Comments	-
•	

· · · · · · · · · · · · · · · · · · ·	,	Effluer	nt	-	Dilutio	n Water
Day	Total Alkalinity (mg/L as CaCO ₂)	Total Hardness (mg/L as CaCO ₂)	Total Residual Chlorine (mg/L)	De-chlorinated (Yes or No)	Total Alkalinity (mg/L as faCO ₂)	Total Nardness (mg/L as CaCO ₁)
0	17	130				•
1	17	130				
2	19	136				
3	19	136				
4	16	126				
5	16	126				
6	16	126				
7	-					

LARVAL MINNOW 7-DAY SURVIAL AND WATER QUALITY DATA

1 67705 67852 67998

u	L Do	RATIO	Eifem (ြပ Da	nte Initiated	6/8/	99	Time 1300	2
le Descrip	tion	OUTFA	ZC 00	Da	te Terminated	6/0/	, 99	Time _/2	3 U
nician:	Day	ata	17AW	2 Taw	3 <u>Jw</u>	4.7W	5 JW	6 <u>7w</u>	7 JW
:	Day	01300	19:30	2 10.00	3 <u>/300</u>	4 1030	5/030	6 <u>/63 =</u>	7/230
× iture:	Day	0 25 "	1 75°C	2 2	3 25	4 25	5 25	6 25	7 25

(CENT)	96.2	NUMBE	OFLIV	E ORGA	NISMS.	*DISSOLVED OX	YGEN (mg/l)			SPECIFIC® =
A STATE OF	Day					PERC	# POSTE	P		CONDITION OF
					30.3	KEKEWAL	RENEWAL			A Committee Carry Land
	0	10	10	10	10		5.5		713	269
1	1	10	(0	/0	70	7.4	8.4	7.1	7.4	276
L	2		_/\ <u>\</u>	(0)	10	7.3	5.4	70	7.4	272
3.5	3		10	10	10	7.2	5.6	7.1	7	274
, , , , , , , , , , , , , , , , , , ,	5	7:5	<u> / </u>	1.0	(0)	73	3.6	7.1	7.4	276
ŀ	6	9	(0 i0	10	70	7.2	8.4	7.7	7.4	2.75 279
ŀ	7	7	10	10	10	7. 0		1.	1-4	
	0	10	16	(0)	10	7.0	5.T	1	7.5	441
Ī	1	10	iO	70	(0)	7.4	6.4	7.1	24	700
, _ [2	10	00	(0	10	7.3		7.0	20	455
1.25	3	10	10	w	10	7.2	24	155	フ・ラ	438
	4	73	(0	10	10	7.3	\$. \$	2.1	7 -5	474
	5	10	_ به _	<u> </u>	40	7.2	8.6	7.2	7.5	453
	6	10	10	10	10	7 8	8.4	7.2	7.5	478
	7	10	- (0 -	<u>00</u>	10	7.0		 	1 _ /	1:0:5
	1	(0	(s)	(0	10		8.4	 	7.6	495
2	2	<u>ro</u>	<u>(a</u>	70	(0	7.4	8 7	17.6	7.4	482 551
2 59	3	4	10	10	10	7.3	8.6	7.2	7.7	505
- b	4	9	10	(0	10	7. 3	1 7 8	13.3		676
	5	a	10	(0)	10	27-	9.0	7.4		592
	6	9	60	10	10	1 5. / 	8.4	15.5	7.6	603
_	7	9	0.1	10	10	7.0		1		
	0	73	10	7.0	(0		5.4		7.8	645
	1	(0	70	10	10	7:3	°a.3	7.3	7%	650
_ 3i	2	10	10	10	10	7.2	5.3	7.5		645
5)	3	10	10	LO.	1 (2	7.0	\$ 5	7.3	178	1 638
, b	5	1,2	<u> </u>	10	10	22	9.7	7.4		644
	6	10	40	40	10	7.2	5.6	17.4		
	7	10	Co	10	10	7.0	3.4	1.5	+	670
	0	10	(6	10	10	1	8.4		7.9	887
	1	10	10	10	10	7.6	1 3	7.6	128	892
	2	16	iv	(c	(9	7.1	2.3	7.6		943
~ 9	3	10	10	10	10	7.0	8.6	15.5		
50%	4	7.5	ľψ	10	10	7.7	8.6	7.5	77	907
~	5	(0	10	10	1.0	7.	8.6	7-5		192
	6	13	10	10	10	7.7-	8-4	7.4	7.8	884
-	7	10	1 40	10	10	7.℃			<u>`</u>	
	0	10	10	10	1-10		8.3		18:1	
	1 2	10	10	40	10	7.6	8.2		7 5 0	1790
1°0 %	3	19	10	1-40-	10	- 7.1.	8.7	7.	3 8 6	
101	4	3	162	9	9	7.0		13.	2 3 3	
6	3	3	10	+ 9	9	70	\$ 5	12.	7 7	1986
	6	1 3	10	8	1 7	7:0	9,4	15		
_	7	1 4	10	1 6	4	6.4	 		4	
		1 /	1	J	- 7					

FATHEAD MINNOW GROWTH DATA SHEET

Client: PR DORADO CHIMINCAL

Date of Test: 6/8/99 — 6/15/99

Percent Effluent	REP.	Pan Tare Wt.	Pan Fish Wt.	Wt. of Fish	# of Fish	Avg. Wt. of each Fish
	A	1.3534	1.3569	.0034	G)	-37
	В	1.3460	1.3500	100 40	(0	.40
CONT	C	1:3410	1.3452	.0047	10	. 42
	D	1.3470	1.3712	. 00 47	10	.42
	E					,
	A	1.3522	1.3562	.0040	10	.40
	В	1.3454	1.3498	10044	10	. 44
6.25 9	С	1 3464	1.3506	.00 72	10	142
B	D	13404	1.3447	10047	10	.47
	E					
	A	1.3286	1-3326	.0040	9	.44
10 -9	В	1.3256	1.3298	100 4 3	10	.43
12.59	С	1.3227	1. 3269	100 42	10	142
_	D	1.3369	1.3402	10033	10	.33
	E					
	A	1.3396	1.3444	.00 48	(0	.48
2 9	В	1.3397	1.3440	.0048	10	• 48
25 %	C	r: 3317	1.3359	·00 ¥ 2	10	. 42
/3	D	1.33.20	1.3359	.0039	160	.39
	E		_			
	A	1.3467	1.3507	.0040	10	, 40
6.4	В	1.3547	1.3590	· 00 4 3	10	.43
50 %	C	1 3228	1.3270	-00 42	0.1	. 34
L 3	D E	1.3554	1-35 88	·00 3 ¥	10	- 34
ļ	A	1.3514	1.3548	10034	\$.42
, 9	B C	13524	1.3564	.0040	10	-40
100 %	D	1-3438	(1.347)	10033	9	37
	E	1.3520	1.3535	100 37	1-9	.41
	A	F				
	B					
	C					
	D					-
	E					
	L	1		<u> </u>		

EARTHNET LABORATORIES, INC. REFERENCE TOXICANT DATA SHEET

Client <u>EZ DC</u> Test Organism <u>+</u> Source <u>ACCU</u> ID # <u>651</u>	4704			Tat Con Tec	al Ha ducti hnici	rdne: vi ty, an	ss a: /Sal	s Caco Inity O hr), 		24	hr	74	,	48	hr	Tot Tw	al A	lkal 72	init;	y as	CaCO	96 hr 96 hr
	Toxicant	Test	M	unber	r Sur	vivir	ng	Di		ved (mg/l	Oxyge .)	n			рн					ducti mhos/		′	
	Concentration mg/t - g/t	Replicate Number	0	24	48	72	96	0	24	48	n	96	0	24	48	72	96	0	24	48	72	96	
	4		lσ	10	10			8.5		8.3			74		712			7/30					
	6		10	10	10			85		8.2			7.4		7.2			9100					
	8		10	8	7			8.5		8.2	,		7.4		7,2			11210			_		
	10		10	1	0			8.5		8.2			7,4		7,2			12980					
	12		10	٥	0_			8.5	8,3				7.4	7.2				17270					
																							in a second
				_			_	ļ						st		ļ	<u> </u>	<u> </u>	_		_	==	Fares Trees (Special Special States of Special Special Special
		<u></u>				ļ	_		<u> </u>				<u> </u>				_	 			┡		
•	<u> </u>	<u></u>	<u> </u>	<u> </u>		<u> </u>	L_	<u> </u>	<u> </u>	<u></u>		<u></u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u></u>		
Dilution Vater Co This Recon - reconstit VS - very soft	uted water				o	_8	٠ ٢	Resu -Z							-							ect.	
S • soft 95% MM • moderately hard			stistical Hethod <u>Brosourcal</u>													iger							

EARTHNET LABORATORIES, INC. REFERENCE TOXICANT DATA SHEET

EML B 6785678. Client 62 6 Test Organism _ Source 656	DARADO CIT CERIODAPHUI WL	A DUBI	_	Stor DII Tot Con	ck \$0 Lution al Ha ducti hnici	lution Wall rdne: vity, an	on _ ter ss as /Sali	Cacco Inity O hr	00 A	pp	2 24	hr.		<u>ω</u>	48	 hr_	Tes ID Tot	it En	d 71 Ikal 12	Date 2 Inity hr _	* <u>c/</u> - y **	C+CO.	9 Time <u>/33</u> 99 Time <u>/24</u> 96 hr
	Toxicant	Test	×	unber	Surv	rivir	Ŋ	01		ved (mg/l	Oxyge .)	n			рĦ					duct I mhos/	•	,	
	Concentration mg/t - g/t	Replicate Number	0	24	48	72	96	0	24	48	n	96	0	24	48	72	96	0	24	48	72	96	
	1		10	6	10				8.5		8,3		7.5		7.3			1685		-			
	2		10	10	10				8.5		8.3		2.5		2,3			380					
	3		10	2	0				8.5		8,3		2.5		7,3			45-70			_		
	4	 	10	0	0				8.5	8.4			1	7.4			<u> </u>	6820			<u> </u>		
	5		10	0	0				8:5	8.4			7.5	7.4	-		-	8010	-		\vdash		
			 -	_						-			<u> </u>				-	\vdash	-		-		
ii safetu y Karangan Masarin										·											1: 1:		Barrar Barrar Angeles (1965) Arang Barrar Barrar (1965) Managan Managan Barrar (1965)
		ļ	-			<u> </u>	<u> </u>		-				-				_	-			-		
Dilution Vater C			<u>1</u>	<u></u>				Resu		L	<u> </u>	<u>l</u>										ect.	
VS • very sof S • soft	Recon - reconstituted water 49 VS - very soft S - soft 95X		4																	•			
. H → hard 'VH → very har ::::DMJ → diluted	S • soft 953 MH · • moderately hard M · • hard Sta							uon U				QA Officer											

APPENDIX B CHAIN-OF-CUSTODY

- HOLVORNHINBATUR

					CHAIN C	OF CUSTODY		Rush		Standard
•			Client					Delivered By:		
Name: E	1 Dorac	lo Che	mical	Attn: Wes	Morsa	Client Ea	rihNet 🕖 [Delivery Service	1	Bus
Address: 4	500	N.W. p	AVE							
City, State, Zi	p:E/A	rado	AR 717	73/			Proj	ect Name/Locat	lon	
Phone Numbe	r:870 8	63-14	84 Fax Nu	mber: 870 80	63-1499					
Lab Use		S	mple Collection	<u> </u>		·	ll Samples to be	Cooled to 4°C	,	- 58:
Sample No.	Date,	Time	Comp/Grab	Source	Sur Analy	sis Required	Container	Preservative	Matrix	Special Instructions
67705	6/7/99	825/A	Comp	001	TSS NO3-N S	Oy Horde For 90	18	42	W	
67769	1 //	11	1,0	1/	Chronic Bon	nomberine	48	42	W	67769
	11	11	Grah	11	Cyanida	<u>,</u>	16	NaOH	W	
	61	11	COMP	. 11	NH -	N	16	14,504	W	
	11 11 11 11				C00		16	H2504	W	
					Metals &		11	HNO	W	
	K	Ч	COMP	11	HEX C	Hermium	18		46	
	u u	u	CUMP	V	TOC		1G	HCL	W	
	u u	k	Comp	Ч	SULFUDE		IG	NAOH	W	
	11	K	GRAB	<u> </u>	PHENOL		16	Hz SOY	W	
			All san	ples will be collecte	d and preserved a	eccording to USEPA es		cols.		
Additional Res	marks:						1			
					**Aurorana - Tana (1988)					
ampled by:	M	M			-y	·				····
lelinquished b	<u>y: [[] v</u>	15		Date: 6/7/29	Time:/0,55	Received by:			Date:	Time:
elinquished b	y:	<u> </u>		Date:	Time:	Received by:			Date:	Time:
lelinquished b	y:		·	Date:	Time:	Received by:		$\overline{}$	Date:	Time:
telinquished b	y:			Date:	Time:	Received for Labora	tory by	1 Kaloo	Dateb?	-99 Time:/0.55

					CHAIN O	F CUSTODY		Rust	1	Star	ndard 🗸 💮 💮
		;	Clien	t Marie			ž.,	Delivere	d By:		
Name:	El Dor	ado Chemi	cal Company	•		Client V	EarthNet	Delivery S	Service	<u>.</u> 1	Bus
Address:	4500 N	orthwest A	venue					Refrigerat	e to 4°C		
City, State, Zi	p: El Don	ado, AR 71	731			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	13/95	Project Name	e/Location		. •
Phone Numbe	r: 870-86	3-1484	Fax N	umber: 870-863-149	99						
		Sı	imple Collection	1							
Sample No.	Date	Time	Comp/Grab	Source	Analysi	s Required	Cont	Pres	Matrix	C Special	Instructions
7998	6/11/99	825	Comp	Outfall 001	TSS, Nitra	ite-N, Sulfate	1 P	4°C	w		
67999	/ ,//	и	"		Amn	nonia-N	1 G	H₂SO₄	w		
	lı	11	1 /	((Bion	counter	68	4°C	u	/	
						\					
				······							
				*	···				<u> </u>		
					•						· · · · · · · · · · · · · · · · · · ·
Il samples wil	l be collect	ed and pres	erved according	to USEPA and/orEa	rthNet Laboratori	es, Inc. established	d protocols.	Y . * *			
dditional Rem	arks:							١		-	
										<u> </u>	
		·					11.	the state of the s			\ \ \
impled by:	WM	1		Relinquished by:	W. M	Date: 6/	///49 Time	o: 845 AL Rec	eived by:	Molhie	aveness
elinquished by	Kel	Sice (Joursos	Date: 61-99	Time: 10156	Received by:	1.	*		Date:	Time:
elinquished by	:			Date:	Time:	Received by:		\	I	Date:	Time:
elinquished by	:			Date:	Time:	Received by:			I	Date:	Time:
elinguished by	,.			Date:	Time:	Received for Lat	boratory by	maxa		Date/~11-99	Time:17-55

__

					CHAIN O	F CUSTODY		Ru	sh	Sta	ndard 🗸
			Clien	17 / A W		e e Met in Land		Delive	red By:		
Name:	El Dor	ado Chemi	cal Company	•		Client	EarthNet	Delivery	Service		Bus
Address:	4500 N	orthwest A	venue	·				Refriger	ite to 4°C		
City, State, Zi	p: El Dora	ido, AR 71	731			3.3		Project Nat	Project Name/Location		
Phone Numbe	r: 870-86	3-1484	Fax N	umber: 870-863-149	99						
M. Milder		Si Si	mple Collectio								
Sample No.	Date	Time	Comp/Grab	Source	Analysi	s Required	Cont	Pres	Matrix	Specia	I Instructions
67852	6/9/99	825A	Comp	Outfall 001	TSS, Nitre	te-N, Sulfate	1 P	4°C	w		
	/ "	44	41		Amm	onia-N	16	H ₂ SO ₄	w		
	U	11	//	11	Riemon	mte	49	400	w		
				Walliam Carlos and Car							
									•		
					•						
				•							
ll samples will	be collecte	d and prese	rved according	to USEPA and/orEar	thNet Laboratorie	s, Inc. established	protocols.				
dditional Rem	nrks:										
							1/				
mpled by: /	N. Il	1		Relinquished by: /	W. M	Date;6/	9/99 Tim	e: Re	ceived by:		
linquished by:				Date:	Time:	Received by:			Date	e:	Time:
linquished by:				Date:	Time:	Received by:	•		Date	e:	Time:
linquished by:				Date:	Time:	Received by:			Date	e:	Time:
linguished by:				Date:	Time:	Received for Labo	oratory by:	May &	Date	6-9-97	Time:[0].[0
						Received for Labo	oratory by:	May In		6-9-97	

APPENDIX C DATA ANALYSIS

: dorado fhminnow-growth

File: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

(P	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	0.370	0.420	0.403
~	68	4	0.400	0.470	0.432
	12%	4	0.330	0.440	0.405
4	25%	4	0.390	0.480	0.443
5	50%	4	0.340	0.430	0.398
	100%	4	0.370	0.420	0.400

eldorado fhminnow-growth

F'le: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

CP	IDENTIFICATION	VARIANCE	SD	SEM
	Control	0.001	0.024	0.012
	68	0.001	0.030	0.015
3	12%	0.003	0.051	0.025
Λ	25%	0.002	0.045	0.023
	50%	0.002	0.040	0.020
O	100%	0.000	0.022	0.011

€'dorado fhminnow-growth

I le: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
E tween	5	0.007	0.001	1.000
Within (Error)	18	0.024	0.001	
Total	23	0.032		

Critical F value = 2.77 (0.05, 5, 18)

Since F < Critical F FAIL TO REJECT Ho: All groups equal

eldorado fhminnow-growth

F le: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment TRANSFORMED MEAN CALCULATED IN ORIGINAL UNITS T STAT SIG ROUP IDENTIFICATION MEAN 0.403 0.432 Control 0.403 0.432 -1.342 2 68 -0.112 3 12% 0.405 0.405 25% 50% -1.789 0.443 4 0.443 5 50% 0.398 0.398 0.224 6 100% 0.400 0.400 0.112

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

eldorado fhminnow-growth

ile: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

	DUNNETTS TEST - 1	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	6%	4	0.054	13.4	-0.030
3	12%	4	0.054	13.4	-0.003
4	25%	4	0.054	13.4	-0.040
5	50%	4	0.054	13.4	0.005
6	100%	4	0.054	13.4	0.003

'i e: eldorado.fhs

Transform: ARC SINE(SQUARE ROOT(Y))

	STEELS MANY-ONE RAI	Ho:Control <treatment< th=""><th></th></treatment<>					
ROUP	IDENTIFICATION	TRANSFORMED MEAN	RANK SUM	CRIT. VALUE	đf	SIG	-
	control	1.371				A	
۷	6.25	1.412	20.00	10.00	4.00		
3	12.5	1.371	18.00	10.00	4.00		
	25	1.412	20.00	10.00	4.00		
	50	1.412	20.00	10.00	4.00		
6	100	1.254	13.50	10.00	4.00		

ritical values use k = 5, are 1 tailed, and alpha = 0.05

·ldorado fathead survival

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

 Rr
 IDENTIFICATION
 N
 MIN
 MAX
 MEAN

 1
 control
 4
 1.249
 1.412
 1.371

 2
 6.25
 4
 1.412
 1.412
 1.412

 3
 12.5
 4
 1.249
 1.412
 1.371

 4
 25
 4
 1.412
 1.412
 1.412

 5
 50
 4
 1.412
 1.412
 1.412

 6
 100
 4
 1.107
 1.412
 1.254

l prado fathead survival

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

RP	IDENTIFICATION	VARIANCE	SD	SEM
- 171	IDENTIFICATION	VANTANCE		254
1	control	0.007	0.081	0.041
2	6.25	0.000	0.000	0.000
3	12.5	0.007	0.081	0.041
4	2 5	0.000	0.000	0.000
5	50	0.000	0.000	0.000
6	100	0.016	0.125	0.062

1 prado fathead survival

f`dorado fhminnow-growth

E le: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED OBSERVED	1.608	5.808 6	9.168 9	5.808 9	1.608

Calculated Chi-Square goodness of fit test statistic = 4.9797

5 ble Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

eldorado fhminnow-growth

H le: C:\EPA\TOXSTAT\ELDORADO.FHG Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

Calculated B statistic = 3.06

Trble Chi-square value = 15.09 (alpha = 0.01)
T ble Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 3.00

t ed for Chi-square table value ==> df (#groups-1) = 5

T ta PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

e'dorado ceriodaphnia reproduction

.e: C:\EPA\TOXSTAT\ELDOCD.REP Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED OPSERVED	3.886	14.036	22.156	14.036	3.886
	4	13	22	19	0

Calculated Chi-Square goodness of fit test statistic = 5.7225

Tole Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

eldorado ceriodaphnia reproduction

? le: C:\EPA\TOXSTAT\ELDOCD.REP Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 5.01

Closest, conservative, Table H statistic = 12.1 (alpha = 0.01)

Jsed for Table H ==> R (# groups) = 6, df (# reps-1) = 9
Actual values ==> R (# groups) = 6, df (# avg reps-1) = 8.67
(average df used)

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Dia PASS homogeneity test. Continue analysis.

eldorado ceriodaphnia reproduction

? le: C:\EPA\TOXSTAT\ELDOCD.REP

Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
3 :ween	5	21.203	4.241	1.303
Within (Error)	52	169.211	3.254	
Focal	57	190.414	to AAA wax war and also date and also the total real and also are also	

Critical F value = 2.45 (0.05, 5, 40)

Since F < Critical F FAIL TO REJECT Ho: All groups equal

eldorado ceriodaphnia reproduction

F le: C:\EPA\TOXSTAT\ELDOCD.REP Transform: NO TRANSFORMATION

В	ONFERRONI T-TEST -	TABLE 1 OF 2	Ho:Contro	Ho:Control <treatment< th=""></treatment<>		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG	
2 3 1 5	Control 6% 12% 25% 50% 100%	19.000 19.800 20.556 19.600 20.300 18.889	19.000 19.800 20.556 19.600 20.300 18.889	-0.992 -1.877 -0.744 -1.611 0.134		

3 iferroni T table value = 2.40 (1 Tailed Value, P=0.05, df=50,5)

alorado ceriodaphnia reproduction

File: C:\EPA\TOXSTAT\ELDOCD.REP Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
G!)UP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	Control	10			
	6%	10	1.939	10.2	-0.800
	12%	9	1.993	10.5	-1.556
4	25%	10	1.939	10.2	-0.600
-	50%	10	1.939	10.2	-1.300
	100%	9	1.993	10.5	0.111

ONC.	NUMBER	NUMBER	PERCENT	BINOMIAL
•	<i>EXPOSED</i>	DEAD	DEAD	PROB.(%)
٠	10	10	100	9.765625E-02
1 0	10	10	100	9.765625E-02
	$1\tilde{Q}_{i}^{\epsilon}$	3	30	17.1875
25	10	0	0	9.765625E-02
1	10.	0	0	9.765625E-02

BINOMIAL TEST SHOWS THAT 6 AND 10 CAN BE
LD AS STATISCARLY SOUND CONSERVATIVE 95 PERCENT
ONFIDENCE LIMITS SINCE THE ACTUAL CONFIDENCE LEVEL
CLATED WITH THESE LIMITS IS 99.80469 PERCENT.
I APPROXIMATE LC50 FOR THIS SET OF DATA IS 8.418062

25

THERE ARE LESS THAN TWO CONCENTRATIONS AT WHICH THE PERCENT AND IS BETWEEN O AND 100, NEITHER THE MOVING AVERAGE NOR THE COLUMN METHOD CANGIVE ANY STATISTICALLY SOUND RESULTS.

ONC.	NUMBER*	NUMBER	PERCENT	BINOMIAL
2 ,3,	EXPOSED :	DE A D	DE A D	PROB.(%)
	10	10	100	9.765625E-02
4 4	10	10	100	9.765625E-02
3	102	10	100	9.765625E-02
?	10	0	0	9.765625E-02
1	10	0	0	9.765625E-02

BINOMIAL TEST SHOWS THAT 2 AND 3 CAN BE

SLD AS STATISCA FOUND CONSERVATIVE 95 PERCENT

ONFIDENCE LIMITS SINCE THE ACTUAL CONFIDENCE LEVEL

S OCIATED WITH THESE LIMITS IS 99.80469 PERCENT.

N APPROXIMATE 1050 FOR THIS SET OF DATA IS 2.449489

N THERE ARE LESS THAN TWO CONCENTRATIONS AT WHICH THE PERCENT EAD IS BETWEEN 0 AND 100, NEITHER THE MOVING AVERAGE NOR THE RABIT METHOD CAN GIVE ANY STATISTICALLY SOUND RESULTS.

APPENDIX E AGENCY DATA FORMS

SUMMARY REPORTING FORMS CHRONIC BIOMONITORING (CON'T)

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL (Pimephales promelas)

ermittee Eldorado Ca	hem. C	O NP	DES NO	
omposite 1 Collected From	Time 8:25	Date 6/6	Time To <u>8.25</u>	Date 6/7
: posite 2 Collected From	8:25	6/8	To 8:25	6/9
coposite 3 Collected From	8:25	6/10	To 8:25	6/11
est initiated: 1300	>	_ am/pm	6/8	date
Elt terminated: 1230		am/pm	6/15	date
i ution water used:		Receiving	<u> </u>	Reconstituted

DATA TABLE FOR SURVIVAL

Lifluent Conc: %			t Survi icate C C	hambers	E	The second secon	an Perce Survival 48h		CV% *
Con	100	100	100	100		100	100	100	0
6.25	100	(00	(50	100		100	100	100	9
/2.5	100	100	100	100		100	100	100	0
25	100	100	100	100		100	100	100	0
ST	100	102	150	100		100	100	100	0
100	80	100	90	90		100	100	90	10.0
-									

^{*} coefficient of variation = standard deviation x 100/mean

DATA TABLE FOR GROWTH

fluent inc. %		rage Dry in repl	licate cn	ambers	04/4.00 W.	Mean Dry Weight (mg)	CV3•*
Con	0.37	0.40	0.42	0.42		0.43	6.0
6.25	0.40	0.44	0.42	0.47		0 432	6.9
12.5	0.44	0.43	0.42	0.33		0.405	12.6
75	0.48	0.48	0.42	0.39		. 0.443	10.2
50	0.43	0.40	0.42	0.34		0.398	10.0
100	642	0.40.	c 37	0.41		0.400	5.5
		٠					

coefficient of variation = standard deviation x 100/mean

Ceriodaphnia dubia SURVIVAL AND REPRODUCTION (con't)

	1	Fighants World man
	⊥.	Fisher's Exact Test:
		Is the mean survival at 7 days significantly different (p=0.05) than the control survival for the % effluent corresponding to (lethality):
a.) b.)	LOW 1/2	FLOW OR CRITICAL DILUTION (/OU %): YES / NO LOW FLOW OR 2 X CRITICAL DILUTION (/OU %): YES / NO
	2.	Dunnett's Procedure or Steel's Many-One Rank Test as appropriate:
		Is the mean number of young produced per female significantly different (p=0.05) than the control's number of young per female for the % effluent corresponding to (significant non-lethal effects):
a.) b.)	LOW 1/2	FLOW OR CRITICAL DILUTION (100%): YES NO LOW FLOW OR 2 X CRITICAL DILUTION (100%): YES NO
	3.	If you answered NO to 1.a) and 2.a) enter [0] otherwise enter [1]:
	4.	If you answered NO to 1.b) and 2.b) enter [0] otherwise enter [1]:
	5.	Enter response to item 3 on DMR Form, parameter #TEP3B.
	6.	Enter response to item 4 on DMR Form, parameter #TFP3B.
	7.	Enter percent effluent corresponding to each NOEL below and circle lowest number:
		a.) NOEL survival = 100 % effluent b.) NOEL reproduction = 100 % effluent

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL(con't) (Pimephales promelas)

•		Dunnett's Procedure or Steel's Many-One Rank Test as appropriate:
		Is the mean survival at 7 days significantly different (p=0.05) than the control survival for the % effluent corresponding to:
a.) b.)	LOW 1/2	FLOW OR CRITICAL DILUTION (/00%): YES NO NO NO CRITICAL DILUTION (/00%): YES NO
	2.	Dunnett's Procedure:
		Is the mean dry weight (growth) at 7 days effluent significantly different (p=0.05) than the control's dry weight (growth) for the % effluent corresponding to (significant non-lethal effects):
3.)	LOW 1/2	FLOW OR CRITICAL DILUTION (100%): YES V NO LOW FLOW OR 2 X CRITICAL DILUTION (100%): YES NO
	3.	If you answered NO to 1.a) and 2.a) enter [0] otherwise enter [1]:
•	4.	If you answered NO to 1.b) and 2.b) enter [0] otherwise enter [1]:
	5.	Enter response to item 3 on DMR Form, parameter # TEP6C.
	6.	Enter response to item 4 on DMR Form, parameter #TFP6C.
	7:	Enter percent effluent corresponding to each NOEL below and circle lowest number:
		a.) NOEL survival = 100 % effluent b.) NOEL growth = 100 % effluent

SUMMARY REPORTING FORMS CHRONIC BIOMONITORING

Ceriodaphoia dubia SURVIVAL AND REPRODUCTION

		<u>hnia</u> <u>dub</u>	<u>ia</u> SURV	IVAL ANI	REPRO	UCTION	TOTAL TO CO.
Permittee:	Gldor	rdo Cl	rem Co	NPDES 1	10.		
Composite 1	0-11		Time	Daj		Time	Date
Composite 1						8:25	6/7
Composite 2	, ,					8:25	6.19.
Composite 3		ted From	825	6/1	O To	8:25	6/11
Test initiat Test termina		0830)	am/pm _am/pm	60	18	date
Dilution wat	er used	:	Rece	iving _		Reconst	
		PE	RCENT S	URVIVAL			
Time of		Pe	rcent E	ffluent		_	
Reading	80	6.2 1.	268	25 8 5	0 8 10	50 g	
24h	100	100	100	100	00 1	00	
48h	100	100	100_	100	100 1	100	
7 day	100	150	900	100 1	00 9	0	
Time of Reading 0% 6% 125% 25% 50% 100% 24h 100 100 100 100 100 100 48h 100 100 100 100 100 100 7 day 100 100 900 100 100 90 NUMBER OF YOUNG PRODUCED PER FEMALE @ 7 DAYS PERCENT EFFLUENT (%) REP 0% 6% 125% 25% 50% 100% A 18 18 21 22 20 19							
		03 638	12.58			100	~:
			2/			19	
		22					
						<u> </u>	
	F 2/				<u>ZZ</u>	17	
	G 22	20	21	21	23	18	
	H <u>19</u>	<u> </u>		<u></u>	22	<u> 19</u>	•
Reading 08 6 126 25 50 100 1							
	J 19	18	2/	18	18	20	
CV * coeffici	%* 10.8	7 8	3.5°	8.7 Dard de	11.6	5.6 x 1007	ean

^{*} coefficient of variation = standard deviation x 100/mean

414 West California Ave Ruston, LA 71270

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

07/14/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED: COLLECTED BY: 06/23/99

MS

PRESERVED?: Y
TIME RECEIVED: 15:00
BROUGHT IN BY: E

			SAMPLE			-81	EGIN~		
SAMPLE ID	SOURCE	PARAMETER	CONC.	UNITS	MDL	DATE	TIME AN	METHOD	COLLECTION DATE TIME
EL68710	004	Antimony	<50.0	ug/l	50.0	06/28/99	10:00 SL	EPA 200.7	06/22/99 19:28
		Nickel(Freshwater)	35.0	ug/i	10.0	06/28/99	10:00 SL	EPA 200.7	
		Copper	<2.0	ug/i	2.0	06/28/99	10:00 \$L	EPA 200.7	
		Chromium	3.0	ug/l	3.0	06/28/99	10:00 SL	EPA 200.7	
		Beryllium	<1.0	ו/פָנו	1.0	06/28/99	10:00 SL	EPA 200.7	
		Zinc	303.0	ug/l	4.0	06/28/99	10:00 SL	EPA 200.7	
		Magnesium	106.0	mg/l	0.015	06/28/99	10:00 SL	EPA 200.7	
		Hex Chromium Extraction	Completed	mg/l	0.003	06/23/99	16:20 SL	EPA 218.4	
		Arsenic	<10.0	ug/i	10.0	06/28/99	09:15 SL	EPA 206.2	
		Cadmium	4.5	ug/l	1.0	06/28/99	15:15 SL	EPA 213.2	
		Lead	<3.0	ug/l	3.0	06/30/99	08:00 SL	EPA 239.2	
		Selenium	<3.0	ug/l	3.0	06/25/99	14:15 SL	EPA 270.2	
		Silver	<2.0	ug/I	2.0	06/28/99	14:00 SL	EPA 272.2	
		Thaillium	<2.0	ug/l	2.0	06/29/99	15:45 SL	EPA 279.2	
		Chromium(VI)	<3.0	ug/l	3.0	06/23/99	18:00 SL	EPA 218.4	
		Mercury	<0.2	ug/l	0.2	06/29/99	06:00 SL	EPA 245.1	
		BOD5	20.0	mg/i	1.0	06/24/99	08:00 GL	EPA 405.1	
		BOD Standard	194.0	mg/l	1.0	06/24/99	08:00 GL	EPA 405.1	
		COD	47.3	mg/l	3.7	06/24/99	09:40 LA	EPA 410.4	
		TOC	13.7	mg/l	1.0	06/27/99	12:00 GL	EPA 415.1	
		Total Suspended Solids	528.0	mg/l	1.0	06/24/99	10:15 LA	EPA 160.2	
		Total Dissolved Solids	4192.0	mg/l	1.0	06/29/99	10:00 GL	EPA 160.1	
		Phosphorus, Total	<0.1	mg/l	0.1	07/07/99	14:00 GC	EPA 365.3	
		Sulfide	PENDING	mg/l		11		EPA 376.2	
		Sulfate	122	mg/l	2	07/06/99	14:00 GC	EPA 375.4	
		Cyanide	<5.0	ug/l	5.0	06/30/99	12:00 GC	EPA 335.2	
		Nitrate + Nitrite	751.8	mg/l	0.1	07/06/99	10:00 GC	EPA352.1-354	į.
		TKN	868.0	mg/l	0.3	06/30/99	07:30 EJ	EPA 351.3	
		Sulfite	<2.0	mg/i	20	07/08/99	15:30 GC	EPA 377.1	
		Oil & Grease	<1.0	mg/l	1.0	07/02/99	09:00 RB	EPA 1864	
		Chloride	53.8	mg/l	1.0	06/28/99	13:45 GC	EPA 325.3	
		Phenol, Total	16.0	ug/I	5.0	07/09/99	07:30 EJ	EPA 420.1	
		Arramonia-N Titration	1066.8	mg/l	0.3	07/13/99	07:30 EJ	EPA 350.2	
Volatile Com	npou nds								
		Acrolein	≺MDŁ.	υg/L	50	06/30/99	17:22 CH	EPA 624	

Page 1

01/14/1333 18:18 318-291-2914 EVBLHNEL FVB bVGE 05

414 West California Ave Ruston, LA 71270

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

07/14/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE--(G)rab/(C)omp: C

DATE RECEIVED: 06/23/99
COLLECTED BY: MS

PRESERVED: Y
TIME RECEIVED: 15:00
BROUGHT IN BY: E

		SAMPLE	BEGIN				COLLECTION		
SAMPLE ID SOURCE	PARAMETER	CONC.	UNITS	MDL.	DATE	TIMI	E ANL	METHOD	DATE TIM
/olatile Compounds					•				_
EL68710 004	Acrylonitrile	<mdl< td=""><td>ug/L</td><td>50</td><td>06/30/99</td><td>17:22</td><td>CH</td><td>EPA 624</td><td>06/22/99 19:28</td></mdl<>	ug/L	50	06/30/99	17:22	CH	EPA 624	06/22/99 19:28
	Berizene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Bromodichloromethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Bromoform	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Bromomethane	<mdl< td=""><td>υg/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	υg/L	50					
	Carbon Tetrachloride	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Chlorobenzene	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Chloroethane	<mol< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/L	10					
	2-Chloroethylvinylether	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Chloroform	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Chloromethane	<mdl< td=""><td>ug/L</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	50					
	Dibromochloromethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,1-Dichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,2-Dichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,1-Dichloroethene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	trans-1,2-Dichloroethene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,2-Dichloropropane	<mol< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/L	10					
	cls-1,3-Dichloropropene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	trans-1,3-Dichloropropene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Ethylbenzene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Methylene chloride	<mdl< td=""><td>ug/L</td><td>20</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	20					
	1,1,2,2-Tetrachloroethane	≺MDL	ug/L	10					
	Tetrachioroethene	<#MDL	ug/L	10					
	Toluene	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Trichloroethene	<mdl< td=""><td>ug∕t.</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug∕t.	10					
	1,1,2-Trichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	1,1,1-trichloroethane	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Vinyl chloride	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Bis(chloro-methyl) ether	<mdl< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/L	10					
	Dichlorodifluoromethane	<mol< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/L	10					
	Trichloroffuoromethane	<mol< td=""><td>ug/L</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/L	10					
/oletile Surrogates									
-	Dibromofluoromethane	94	% Rec	76-144	06/30/99	17.22	СН		
	Toluene d8	113	% Rec	88-110					

Page 2

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

07/14/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED:

06/23/99

COLLECTED BY:

MS

PRESERVED: Y
TIME RECEIVED: 15:00
BROUGHT IN BY: E

			SAMPLE	SAMPLE			EGIN-			COLLECTION
SAMPLE ID SO	OURCE	PARAMETER	CONC.	UNITS	MDL	DATE	TIME	ANL	METHOD	DATE TIME
Volatile Surroga			***************************************							
EL68710 00	4	4-Bromofluorobenzene	115	% Rec	86-115	06/30/99	17:22	СН		06/22/99 19:28
Semi Volatile Pr	riority Pollutant									
	-	Acenaphthene	<mdl< td=""><td>ug/l</td><td>10</td><td>07/01/99</td><td>10:47</td><td>СН</td><td>EPA 625</td><td></td></mdl<>	ug/l	10	07/01/99	10:47	СН	EPA 625	
		Acenaphthylene	<mol< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	10					
		Anthracene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Benzidine	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50					
		Senzo-(a) Anthracene	<mdl< td=""><td>υ<u>σ</u>/Ι</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	υ <u>σ</u> /Ι	10					
		Benzo (a) Pyrene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Benzo (b) Fluoranthene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Benzo (ghi) Perylene	<mdt.< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td></mdt.<>	ug/l	20					
		Benzo (k) Fluoranthene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Chloroethoxy) Methane	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Chloroethyl) Ether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Chloroisopropyl) Ether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Bis (2-Ethihexyl) Phthalate	<mdl< td=""><td>ugΛ</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ugΛ	10					
		4-Bromophenyl-phenylether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		Butylbenzylphthalata	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		4-Chloro-3-Methylphenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		4-Chlorophenyl-2-Methylphenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2-Chloronaphthalene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2-Chlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		3-Chlorophenol	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/I	10					
		4-Chlorophenol	<mdl< td=""><td>ug/I</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	u g/ I	10					
		Chrysene	<mol< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	10					
		Dibenz (a,h) Anthracene	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20					
		1,2-Dichlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		1,3-Dichlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	u g /l	10					
		1,4-Dichlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2,3-Dichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2,4-Dichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2,5-Dichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					
		2,6-Dichlorophenol	<mdl< td=""><td>ug/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	10					
		3,3-Dichlorobenzidine	<mdl< td=""><td>ug/i</td><td>50</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	50					
		3,4-Dichiorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10					

Page 3

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

07/14/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-883-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED:

06/23/99

COLLECTED BY: M

MS

PRESERVED?: Y
TIME RECEIVED: 15:00
BROUGHT IN BY: E

			SAMPLE			BI	EGIN-			COLLEC	TION
SAMPLE IC	SOURCE	PARAMETER	CONC.	UNITS	MOL	DATE	TIME	ANL	METHOD	DATE	
	e Priority Poliutant		,							* m	
EL68710	004	3,5-Dichlorophenol	<mdl< td=""><td>ug/1</td><td>10</td><td>07/01/99</td><td>10:47</td><td>ÇН</td><td>EPA 625</td><td>06/22/99 1</td><td>9:28</td></mdl<>	ug/1	10	07/01/99	10:47	ÇН	EPA 625	06/22/99 1	9:28
		Diethylphthalate	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		2,4-Dimethylphenol	<mdl< td=""><td>ug/1</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/1	10						
		Dimethyl Phthalate	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Di-n-Butylphthalate	<mdl< td=""><td>սը/i</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	սը/i	10						
		4,6-Dinitro-2-Methylphenol	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50						
		2,4-Dinitrophenol	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50						
		2,4-Dinitrotoluene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		2,6-Dinitrotoluene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Di-n-Octyl Phthalate	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		1,2-Diphenylhydrazine	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20						
		Fluoranthene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Fluorene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Hexachlorobenzene	<mol< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/l	10						
		Hexachlorobutadione	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Hexachlorocyclopentadiene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Hexachloroethane	MOL	ug/l	20						
		Indeno (1,2,3-cd) Pyrene	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20						
		Isophorone	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Naphthalene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Nitrobenzane	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		2-Nitrophenol	<mdl< td=""><td>ug/i</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/i	20						
		4-Nitrophenol	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50						
		N-nitrosodimethylamine	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50						
		N-Nitrosodi-n-Propylamine	<mdl< td=""><td>nθ\</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	nθ\	20						
		N-Nitrosodiphenylamine	<mdl< td=""><td>ug/l</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	20						
		Pentachlorophenol	<mdl< td=""><td>ug/l</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	50						
		Phenanthrene	<mdl< td=""><td>ugΛ</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ugΛ	10						
		Phenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		Pyrene	<mol< td=""><td>ug/1</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mol<>	ug/1	10						
		1,2.4-Trichlorobenzene	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		2,4,6-Trichlorophenol	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		4-Chlorophenyl Phenylether	<mdl< td=""><td>ug/l</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ug/l	10						
		1,2-Diphenylhydrazine	<mdl< td=""><td>ugΛ</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>	ugΛ	10						

Page 4

414 West California Ave Ruston, LA 71270

318-255-0060 318-251-5614 FAX 800-256-4362

Quality People Working For A Quality Environment

SAMPLE

CONC.

⊲MDL

79

69

92

81

78

42

07/14/99

El Dorado Chemical Company Wes Morgan P.O. Box 231 El Dorado, AR 71730 870-863-1484 FAX#870-863-1499

SAMPLE-(G)rab/(C)omp: C

DATE RECEIVED:

06/23/99

PARAMETER

Nitrobenzene 2-Fluorobiphenyi

Terphenyl d14

2-Fluorophenol

2,4,6-Tribromophenol

Phenoi de

2,3,7,8-Tetrachlorodibenzo-p-di

COLLECTED BY:

SAMPLE ID SOURCE
Semi Volatile Priority Pollutant

Semi-voistile Surrogates

EL68710

MS

PRESERVED?: Y

43-116

33-141

10-110

20-110

% Rec 10-123

% Rec

% Rec

% Rec

TIME RECEIVED: 15:00 BROUGHT IN BY:

:				EGIN-		COLLECTION
	UNITS	MDL	DATE	TIME ANL	METHOD	DATE TIME
	ug/l	5	07/01/99	10:47 CH	EPA 625	06/22/99 19:28
	% Per	35_115	07/01/00	10:47 CH		

Certified By QA Director/QC Manager

Analyses conducted in accordance with the list of Approved Test Procedures, published in 40 CFR--Parts 60, 136, and 261. Test procedures are from the 18/19th edition of Standard Methods for the Examination of Water and Wastewater, Methods for Chemical Analysis of Water and Wastes, 1979 (EPA) ASTM (Annual Book of Standards, Part 31, Water, 1985), or Test Methods for Evaluating Solid Waste (SW-846).

The duplicate analyses and/or spiked samples indicate all methodologies are in control. Retain records for three years.

* Indicates out of compliance limits established by client and/or regulatory agencies. See permit for regulatory reporting requirements.

Refrigerate to CC
P.O. # 59509 2

į.					Chair	1-of-Custody			R	ush 🛛	Standard []
	. //.		a distribution				, and the second	elivered	By:		
Vame: E	Dorad	6 Che	meal	Att w	es Mirgh	Client 🕑	EarthNet 🗌	Delive	ry Service	: 🛮	Bus 🗌
Address: 4	1500	N.W.	AVE	P.O. Box	231				·······		
City, State,	Zip: ¿	-1000	M. T. C.	ADC 7173	7		Projec	t Name/	Location		Million Cappi Maria Carani (1994)
Phone Num	The office organizate and other to be	A D. C. AND CO. LANSING MICH. B. L. L.		Number: 970	863-1499						
T. A.	A second of the second										gaskii r
	DME		_	Source		Analysis Require	vđ	Cont	Pres	Spec	ial Instructions
素28716	6/22/1	724	1	004_	Frente 1	Stormon ten		28	400	W	
EAR]	1/	* (.,0	11	TSS, NO. N SO.	, Chlorite, 1	DO PUYT	11	400	w	
	11	11	(/ (J- 32)	(1	Metals		, , , , , , , , , , , , , , , , , , ,	1/	HILL	w	
	11	7		11		rense		16	H. Dy	W	
	11	72.	coal	(!	NH2-N	TOC		16	Hz Su	w	
	1'	11	71	1.1	Chrame	im Hes	<u> </u>	15	400		
4	11	11	(1	11	<u>C00</u>			16	Hz Soy	W	
-561	11	4250	Gra	(1	CHRISTO	le		16	Val4	W	
251	1	7280	COYET	()				20	4%	W	
φ ·		cara horioù sa vinoche	Company of the Compan		days and the second	esse utrace to the control	and the second second	1			No.
							rice, Inc. established				3 8
[∞] Additional F	Remarks:	* An 40	am I	Arsenie T	Beryllian	T. Codmi	IT Chromi	en t	Carre	Til	end T
1 Mercu		Nice	kel'T,	Stlenim			nalleum T			henol	<i>,</i> 1
on on on	0 /	,			1				T		
Sampled by:	1/1/20	19	· · · · · · · · · · · · · · · · · · ·	Relinquished b	ry: W/	Date:	4/23/9 Time:		Received	i by:	
Relinquishe	dby: 1	WS	·	Date: 6-23-90	Time: 1500	Received by:		2,	21	Date:	Time:
Relinquishe	d by:			Date:	Time:	Received for	Laboratory by:	twent	Letto	DM. 6/5	7 Time /5700

414 West California Ave Ruston, LA 71270

318-255-0060 318-251-5614 FAX 800-256-4362

July 14, 1999

Mr. Wes Morgan El Dorado Chemical Co. 4500 North West Ave. P.O. Box 231 El Dorado, AR 71731

Dear Mr. Morgan,

Enclosed are the results of two 24-hr screening toxicity tests which were conducted for El Dorado Chemical Co. on June 23-24, 1999, using stormwater effluent collected from Outfall 004. The test species used in the 24-hour acute toxicity tests were the fathead minnow (<u>Pimephales promelas</u>) and the cladoceran, <u>Daphnia pulex</u>.

The effluent sample collected from Outfall 004 was found to show acute 24-hour toxicity to both test species, with 100% mortality occurring within 24 hours. The observed mortality was probably due to the high conductivity of the effluent sample (over 11,000 mhos/cm). Conductivity this high could result in the death of the organisms even in the absence of any toxic compounds.

If you have any questions concerning these biomonitoring tests, please do not hesitate to call us at 1-800-256-4362. Thank you for choosing EarthNet Laboratories for your biomonitoring needs.

Sincerely,

/John M. Wakeman, Ph.D. Biomonitoring Supervisor

THE RESULTS OF TWO 24-HOUR ACUTE SCREENING TOXICITY TESTS

Conducted for

EL DORADO CHEMICAL CO.

(Stormwater from Outfall 004)

July 14, 1999

PREPARED BY:

John M. Wakeman, Ph.D. Supervisor of Biomonitoring EarthNet Laboratories, Inc. 414 W. California Ruston, Louisiana 71270

07/14/1999 16:18 318-251-5614 EARTHNET LAB PAGE 08

TABLE OF CONTENTS

Pa	ge
1.0 Introduction 2	
2.0 Methods and Materials	
2.2 Test Organisms 2 2.3 Dilution Water 2 2.4 Test Concentrations 2	
2.5 Sample Collection	
2.7 Monitoring of Bioassays	
1.0 Conclusions 4	
5.0 References 4	
Appendices	

- A Raw Data B Chain of Custody

1.0 <u>Introduction</u>

EarthNet Laboratories, Ruston, Louisiana, conducted two 24-hour acute screening toxicity tests for El Dorado Chemical Co in June 1999 using effluent samples collected from Outfall. The species tested were the fathead minnow, <u>Pimephales promelas</u>, and the cladoceran, <u>Daphnia</u> pulex.

2.0 Methods and Materials

2.1 Test Methods

All test procedures and methods followed were according to "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms" (EPA 600/4-90/027F).

2.2 Test Organisms

The fathead minnows were obtained from Aquatox Inc. and were one day old at test initiation. The minnows were fed with live brine shrimp prior to test initiation, but not during testing.

The cladocerans were obtained from ENL cultures and were less than 24 hours old at test initiation. The cladocerans were fed 0.2 ml/100 ml of standard YCT/algae diet prior to test initiation.

2.3 Control Water

Control water used in the 24-hour acute toxicity screening tests was moderately hard laboratory water.

2.4 Test Concentrations

For each test species, the test concentrations were 100 percent of the stormwater effluent, and a laboratory water control. In each concentration, the test species were tested in four replicates of 10 organisms each for a total of 40 organisms per concentration.

2.5 Sample Collection

An effluent grab sample was collected from Outfall 004 on June 22, 1999 by El Dorado Chemical Co. personnel. The sample was immediately iced to 4°C, and delivered to ENL's Ruston Laboratory (see Appendix B - Chain of Custody).

2.6 Sample Preparation

Upon receipt, the sample was logged in, labelled with appropriate identification number, and warmed to 20° C. Initial dissolved oxygen, pH, and conductivity measurements were recorded.

2.7 Monitoring of Toxicity Tests

Monitoring of the 24-hour acute definitive toxicity tests consisted of pre and post dissolved oxygen measurements, pH, and conductivity measurements. Survival was also recorded at the end of the 24-hour exposure period. A temperature of 20±1°C was kept constant with a Remcor liquid circulator and monitored diurnally.

2.8 Data Analysis

A T-test was used to compare survival in the prepared effluent with survival in the controls.

3.0 Results and Discussion

The Outfall 004 data is summarized in Table 1. Both species (fathead minnows and cladocerans) experienced 100% mortality in the 100% effluent sample, while no deaths occurred in the controls. Thus the stormwater effluent sample collected from Outfall 004 was found to show acute 24-hour toxicity to both test species. The raw data sheets can be found in Appendix A.

Table 1. Summary of 24-hour Acute Screening Toxicity Test Data for stormwater effluent collected from Outfall 004.

Percent Effluent	<u>Percent</u> Pimephal <u>es promelas</u>	Survival Daphnia pulex
Control	100	0 *
100 percent	100	0 *

^{*} survival significantly different from control (p = 0.05)

4.0 Conclusions

The effluent sample collected from Outfall 004 was found to be acutely toxic to both test species within the 24-hour test period.

5.0 References

U.S. EPA. 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 4th Edition, Cincinnati, Ohio EPA/600/4-90/027F. August 1993.

4

APPENDIX A RAW DATA SHEETS

01/14/1333 16:18 318-221-2614 EARTHNET LAB PAGE 13

RARTHNET LABORATORIES, INC.

ACUTE TEST BURYIVAL AND WATER QUALITY DATA

|--|

EARTEMET LABORATORIES, INC.

ACUTE TEST BURVIVAL AND WATER QUALITY DATA

moripiles M	DOUTDO CHI AGY BB716						4 4 5	Ending: Sechnician: Tima:	<u> </u>	_		•	25 MW 22 UN	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24/89 3 24 hr C2 4	200	=		74 22	3 1	
	1. TAOM	\$60\$			Parber of 1 ive	. 3	-	Tesperatura. Disselved	1 2	specatures 0 i	<u>ئ</u> 0	a -		2 2	2	1	! -	~, §	72 kr Conductivity	1 2	*
Per cont Effluent	fest Replicate	Satinity (mg/ml)	-	8 2	Organisms 46 46 7		*	•	1 2	27 mm		8	7%		E	8	0	3 %	(tupos/com)	1 E	\$
And	Q		0/	0)			30	8681	=	_		1	7472	70			18	25.50			
	&		0/ 0/	Ó			18	8.6 8.1	16			•	74 /2	*			35	29821			
	U		9/	٥/		_	- **	18 33	3.5			-22		7			25	181 789			
	\mathcal{Q}		0/	0/			24	878	8.1			12	2.2 7.2	2			720	100			
700	У			0			-35	8666	- 40			7.0	(36.1				7	## 116n	Q		
	8		2/	0			00	3.8	77			10	6.3 6				**	147 /1822	~		
	Ü		Q	0	-	-	600	6.6	3.00	 	-	19	636.	-	L		至	2017 漫山	7		
	a		o'	0	 		30	198	3.8		-	**	19/69				W)	114 /1822	ń		
				-		 		<u> </u>		_	_	-	-		_		_				
				 	-	_	-	 	-	-	-		_	_	_	_					
						-	-	-	+	-	+	-	-	-	_						Γ
				-		 -	-		-		-	-	-	_	_						
				 	-		-		-		-	-	-	 							
				-	-	-	-	-	-	_	_	-	-	-							
				-		-	-	 	-	_	-	 -	_		L	_					
				-	 	-	-	_	 	-			-	-	_						
						-		-			-	-	-	_							
				۲	-	L	۱							ŀ	ŀ		ļ				Į

ACUTE TEST SURVIVAL AND WATER QUALITY DATA

68716.68715,68714,68713	Test initiation: Osto 6/3 line 1200 Test Termination: Date 6/24 line 1200
Cilent <u>FLAOrako Chem</u>	Technician CS
Project # 68716,68715,68714 68713	Test species/1.0. 1 P. Prometro 1 655
Semple Description 004,005,006 006	D. pulex 1656.

1	•				Sample Infor	metion	·			foot donnelse		104	10#	
	Sample ID	Coll	acted	Total Rosjavil	De- chterinoted	Sodium Thiosulinte	Salinity	Hardness mg/L as	Alkalinity mg/L as	Test Species Information	655	656	10#	L
I	Number	Dote	7 les	Chlorine (mg/L)	(Yes or No)	(mg/L)	(ppt)	CaCO,	CaCO,	Age or Size		K2 PHY		L
1	68716	16/22	7/28	Norse				760	5	Leading Ests (ps/L)	1.05/2	40 694		L
	78715	6/22	7/35	Nova				840	20	Test Container Size	1 '	250		
	68714	6/22	4/23	None				310	4	fest Volume (L)	02	0.2		
	68713	6/22	4/50	None				640	11	Feeding: Type	Shirt	YE Tax		
ı												700/6		
							1			Aeration: Began		ioda		
							,			Amount	+860			
٠			'	-						Ditution Water 10#				-
		ļ								Accidention Period	2hr	242	<u> </u>	
. 1	ı									Condition of			ļ	
										Survivors			L	
						l al	ρĦ	Marchess mg/L as CaCO,	Attailalty mg/L ea CmCO,	Comments				
	*					718	7.4	78	96					
	_													
		1												
	•													•

APPENDIX B

CHAIN OF CUSTODY

07/14/1999 16:18 318-251-5614 EARTHNET LAB PAGE 17

P.O. # 59509 2

1					Chain-	of-Custody			Re	ush 🗆	Standard []
			o Jenji				D	elivered	By:		
Name: E/	Drade	Che	recal	Att we	Margh	Client 🕑	EarthNet [Delive	ry Service		Bus 🗌
Address: 4		_		P.O. Box 2	231				-		
City, State,	Zip: E	1001	ado 1	402 71731	/	B. S.	Projec	t Name/I	ocation		***************************************
Phone Numb	xer: 970	863-1	184 Fax	Number: \$70	863-1499						
n A			ple collectio						J. 1899	4 ₂	
	Dave	Time	Carponi	Source	🌺 🖟 (m. 10. 100) - 14	Analysis Require	ď	Cont	Pres	Specia	Il Instructions
2871b	6/22/1	724	Com	004	Picate B.	10 montes		Z-P	4%	W	70.00
Í	10	, , '	0	(1)	TSS NO. N SON	chbite B	OD POUT	18	400	w	
LI	11	li	1.6	(1	Metals			11	HILL	w	
,	(1	900	600	11	Dild 6	ense		16	1, 94	W	
	17	72 4	wal	1.1	NH-N	TOC		16	Ha Say	w	
	11	7+	70	£ &	Chramu	in Hey	<i></i>	18	400	w	
	10	11	(1	11	COD	· · · · · · · · · · · · · · · · · · ·		16	Hz Soy	W	
0	11	428	GRE	(1	Cyanid	₹		16	Nalt	W	
· ((72860	Colle	()	· · · · · · · · · · · · · · · · · · ·			21	4%	W	
	Will be co	lected a	o preserva	i according to US	EPA and/orEarth	iNet Laborator	ies, Inc. establishe	d protoco	ls. 🙈 🖟	34	Ÿ.
Additional R	temarks:	# Anto	non I	Prsenie T	. Beryllian	T. Codmi	- T Chrom	un T	Carrer	T. 11	end T
Moren	~ J	Nice	kel T	Selenim	T 5, 100	- T. 1	mT, Chromi Malleum T	Zine	TP,	henole	
	0 /	, , , , , , , , , , , , , , , , , , , 			,	,	/ /				
Sampled by	11/1	19		Relinquished by	y: WM	Date	6/23/9 Time:		Received	l by	
Relinquishe	// A	46 S	<u>→</u>	Date: 6-23-99		Received by:		2,	21	Date:	Tiener
Relinquishe				Data:	Time:	Received for	Laboratory by o	twent	Potto	DHI 6/23	A Time /5700